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We study statistical properties of a family of maps acting in the space of integer
valued sequences, which model dynamics of simple deterministic traffic flows.
We obtain asymptotic (as time goes to infinity) properties of trajectories of
those maps corresponding to arbitrary initial configurations in terms of statistics
of densities of various patterns and describe weak attractors of these systems
and the rate of convergence to them. Previously only the so called regular initial
configurations (having a density with only finite fluctuations of partial sums
around it) in the case of a slow particles model (with the maximal velocity 1)
have been studied rigorously. Applying ideas borrowed from substitution
dynamics we are able to reduce the analysis of the traffic flow models corre-
sponding to the multi-lane traffic and to the flow with fast particles (with velo-
cities greater than 1) to the simplest case of the flow with the one-lane traffic
and slow particles, where the crucial technical step is the derivation of the exact
life-time for a given cluster of particles. Applications to the optimal redirection
of the multi-lane traffic flow and a model of a pedestrian going in a slowly
moving crowd are discussed as well.

KEY WORDS: Dynamical system; traffic flow; substitution dynamics; attractor;
rate of convergence; large deviations.

1. INTRODUCTION

Let XM :={x=(...x−1x0x1...) : xi ¥ AM, i ¥ Z} be the space of bi-infinite
sequences (which we also call configurations) from the alphabet AM=
{0, 1, 2,..., M}. We equip this space with the metric

distM(x, y) := C
.

i=−.

(M+1)−|i| |xi − yi |



and consider a map T1, M: XM Q XM from this metric space into itself:

(T1, Mx)i :=xi+min{xi − 1, M − xi} − min{xi, M − xi+1}. (1.1)

One can interpret the ith coordinate of x ¥ XM as xi particles and M − xi

holes (empty places) located at the site i of the integer lattice Z. Then this
map can be considered as a discrete time/discrete space model for multi-lane
highway traffic when a particle (vehicle) at site i of the lane j can switch to
any other lane jŒ (nonnecessary neighboring) whenever it does not disrupt
the motion of other particles, i.e., the sites i, i+1 of the lane jŒ are not
occupied. From the point of view of probability theory the dynamics of this
map is a deterministic version of an asymmetric exclusion process, i.e., the
motion of a collection of random walkers constrained to the nonintersection
assumption (see, e.g., refs. 7 and 11). Traffic flow phenomena have attracted
considerable interest during last three decades both from the applied and
theoretical points of view. For the general account on these matters we refer
the reader to recent reviews (5, 9) (and numerous references cited there). The
deterministic traffic flow models considered in this paper are not new (except
probably for the case v, M > 1) and have been studied extensively both on
numerical and theoretical levels (see, e.g., refs. 3, 5 and 13–15) in the case of
spatially periodic initial configurations, and from the point of view of the
evolution of random initial data using various statistical physics approaches
(see, e.g., refs. 1, 2, and 10). We shall show that a much more detailed
description of asymptotic (as time goes to infinity) properties of the system
on the level of individual trajectories is available and shall concentrate only
on the mathematical background of deterministic models of traffic flows.

We shall refer to the system (T1, M, XM) as the slow particles model,
and to take into account traffic flows where particles can move with the
(maximal) velocity v > 1 (a fast particles model ) we consider a family of
maps Tv, M: XM Q XM describing the M-lane traffic flow model with the
maximal velocity |v|, i.e., a particle in this flow can move to the right (left if
v < 0) by at most |v| positions if those positions are not occupied. Note that
in the case when both parameters v and M are greater than 1 an additional
technical step consisting in a ‘‘sawtooth redirection’’ S of particles from the
configuration x between M lanes (see Section 4) is needed to give a concise
definition of the multi lane fast particles model Tv, Mx :=;j Tv, 1(S0x) (j).

To simplify the notation we shall drop the indices if they are equal to 1,
i.e., T2 means the case v=2, M=1 and T1, 3 means the case v=1, M=3,
while T stands for the case v=M=1. By a dual configuration for the con-
figuration x ¥ XM we mean a configuration xg ¥ XM such that xg

i =M − xi

-i. The operation of taking a dual can be applied also to the map by means
of the relation: Tg

v, Mxg :=(Tv, Mx)g
-x ¥ XM.
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To illustrate the usage of the dual operation consider the slow particles
model with ‘‘smart drivers,’’ who anticipating the motion of at most m cars
ahead, may move to an occupied site ahead of it with the maximal velocity 1.
Example for the case M=2: O01110PQ O01011P, where O ·P denotes the
main period of a (space) periodic configuration. It is straightforward to
show that this model is described by the map T̃x=(T−m, 1xg)g=Tg

−m, 1x.
By a word A we shall call any (finite or infinite) sequence of elements

ai ¥ AM and introduce the notion of the density of a finite word B in a
finite word A as

r(A, B) :=
1

|A|
C

|A| − |B|+1

i=1
min |B|

j=1
3# Ai − 1+j

Bj

$4 , (1.2)

where |A| is the length of the word A, Aj ¥ AM is the jth element of the
word A, NaM is the integer part of the number a if |a| < . and is equal to 0
otherwise, and we set 0/0 — 1 here and in the sequel. In the case M=1 the
number r(A, B) ¥ [0, 1] and is equal to the number of occurrences of the
subword B in A divided by the length of A, while in the general case M > 1
we have r(A, B) ¥ [0, M] and the formula (1.2) takes into account mul-
tiplicities of those occurrences. Example: r(255, 12)=1

3 (2+2)=4/3.
The generalization of this notion for an infinite word/configuration

x ¥ XM leads to the notion of lower/upper density:

r±(x, A) := lim
n, m Q .

1 sup
inf

2 r(x[ − n, m], A),

where (and in the sequel) lim sup corresponds to the index + and lim inf to
the index − , and x[n, m] is a subword of the word x which starts from the
position n and goes till the position m in the original word. The asymmetry
with respect to n and m is necessary to take into account the possibility to
have left and right ‘‘tails’’ with different statistics: for x :=...00001111...
we have r− (x, 1)=0 and r+(x, 1)=1, while r(x[ − n, n], B) ||0

n Q . 1/2.
Observe also that for a (space) periodic configuration OAP :=...AAA... we
have r− (OAP, B)=r+(OAP, B) — r(OAP, B) for any pair of finite words
A, B.

For a collection of particles on a lattice one can define its average
velocity as follows. For each particle in a configuration x ¥ X we define its
‘‘local’’ velocity as a distance by which the particle will move on the next
step of the dynamics, and, since for M > 1 a site i in the configuration
x ¥ XM may contain several particles (i.e., xi > 1), we sum up their veloci-
ties to get the quantity V(x, i). If xi=0 we set V(x, i) :=0. For example,
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in the case of the map T1, M we have V(x, i) :=min{xi, M − xi+1}. Now we
define the lower/upper average velocity as

V±(x) := lim
n, m Q .

1 sup
inf

2 1
r(x[ − n, m], 1) · (n+m+1)

C
m

i=−n
V(x, i).

Often it is more convenient to work with another statistics, called flux,
equal to the number of particles crossing a given position on the lattice per
unit time, i.e., F(x[ − n, m]) := 1

n+m+1 ;m
i=−n V(x, i). Thus we define the

upper/lower average flux as

F±(x) := lim
n, m Q .

1 sup
inf

2 1
n+m+1

C
m

i=−n
V(x, i).

We shall use also the notation F (v)
± to indicate the maximum velocity if

needed, and 0i :=00 · · · 0z
i

. The connection of the flux to the densities is

given by the following simple result.

Lemma 1.1. F(v)
± (x)=;v

i=1 r±(x, 10i) for x ¥ X, in particular F(1)
± (x)

:=r±(x, 10).

Proof. By definition we have

F (v)
± (x)=v · r±(x, 10v)+(v − 1) · (r±(x, 10v − 1) − r±(x, 10v))

+ · · · +1 · r±(x, 10)

=(v − (v − 1)) · r±(x, 10v)+((v − 1) − (v − 2)) r±(x, 10v − 1)

+ · · · +1 · r±(x, 10)

= C
v

i=1
r±(x, 10i). L

The main results of the paper are the following statements.

Theorem 1.2 (Invariance of Densities). r±(T t
v, Mx, A)=r±(x, A) for

all x ¥ XM and t ¥ Z+ if and only if A ¥ {0, 1}.

Denote by Freev :={x ¥ XM : V(x, i)=v · xi -i ¥ Z} the subset of con-
figurations where all particles have the maximal available velocity and thus
move independently. Clearly, Tv, M(Freev)=Freev and Tv, M(Freeg

v )=Freeg
v .
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Theorem 1.3 (Convergence). The set Freev 2 Freeg
v is the only

locally maximal weak attractor of the dynamical system (Tv, M, XM), and
for x ¥ XM we have

T t
v, Mx ||0

t Q . ˛Freev if r+(x, 1) [ M
v+1

Freeg
v if r− (x, 1) \ M

v+1 .

Theorem 1.4 (Limit Flux). F(v)
± (T t

v, Mx) ||0
t Q . Fv, M(r±(x, 1)), where

Fv, M(t) :=˛vt if t [ M
v+1

M − t otherwise.

The function Fv, M, describing the limit average flux and the corre-
sponding function for the limit average velocity (often called a fundamental
diagram in the literature) are shown in Fig. 1.

Denote by mp a product (Bernoulli) measure with the density pM on
the space of sequences XM.

Theorem 1.5 (Typical Dynamics). For mp-a.a. x ¥ XM we have
r(x, 1)=pM and distM(T t

v, Mx, Free 2 Freeg) [ M−t/c+1 and lim supn Q .

1
2n

;n
i=−n V(Tn

v, Mx, 1)=Fv, M(r(x, 1)) for any c ¥ (0, 1).

In the last statement one can use instead of mp any probabilistic
translation invariant measure with fast enough decay of correlations (see
Lemma 2.11).

Proofs of Theorems 1.2–1.5 are based on the reduction of the general
case v, M \ 1 to the simplest one v=M=1. For v=1, M > 1 this reduc-
tion boils down to the proof that a multi lane traffic flow can be repre-
sented by a direct product of one-lane flows (see Theorem 4.1 describing
the ‘‘sawtooth redirection’’ construction). In the case v > 1, M=1 we make
use of a specially constructed substitution dynamics (see Lemma 3.1) to

Fig. 1. Fundamental diagram for Tv, M: dependence of the average velocity V or the flux F

on the density r=r( · , 1).
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prove the reduction, while in the general case v, M > 1 we combine these
two arguments. The main technical step of the analysis in the case
v=M=1 is the derivation of the exact life-time for a given cluster of par-
ticles, i.e., the number of iterations after which it will disappear, described
in Lemma 2.4. Note that earlier only very weak (and unnaturally large)
estimates of the life-time type were known (see, e.g., refs. 3, 4, and 8). We
provide also the analysis of the rate of convergence to the limit of various
statistics for ‘‘typical’’ initial configurations based on large deviations
estimates (see end of Section 2), and study the dynamics of a passive tracer
in the flow of fast particles imitating a motion of a fast pedestrian in a
slowly moving crowd of people (Section 6).

It is clear that the main problem in the study of traffic flows is the
analysis of ‘‘traffic jams’’ (without them the dynamics is trivial): we shall
say that a segment x[n, m] with m > n corresponds to the jammed cluster if
for each particle belonging to this segment either its velocity is strictly less
than the maximum available velocity v, or there is another particle at the
same site for which this inequality holds. Note that in the case v=M=1
the jammed cluster is the same as the cluster of particles.

2. THE ONE LANE SLOW PARTICLES MODEL (T, X )

This model has been introduced originally in ref. 14 for the case of a
traffic flow on a finite lattice (say of size L) with periodic boundary condi-
tions and studied numerically in a large number of publications. It is
straightforward to show that this case corresponds to the restriction of
the map T to (space) L-periodic configurations. The first ‘‘quasi’’-analytic
result for the L-periodic case has been obtained in ref. 8 for ‘‘typical’’
initial configurations of length L. However the first complete proof
appeared only in ref. 3, where regular initial configurations on the infinite
lattice (having a density with only finite fluctuations of partial sums around
it) were considered as well. In this section we shall study the problem for all
initial configurations, using a rather different and more simple approach
than the one in ref. 3.

Let us start from the analysis of lower and upper densities. Note that
if the lower density coincides with the upper one, i.e., the limit value exists,
we call this common value the density r( · , · ). Example when they do not
coincide: 1=r+(...111000..., 1) ] r− (...111000..., 1)=0.

Lemma 2.1. r±(x, 1)=1 − r+ (x, 0), and thus r±(xg, 1)=1 −
r+ (x, 1).
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Proof. By the definition of the lower density we have

r− (x, 1)=lim inf
n, m Q .

r(x[ − n, m], 1)

=1 − lim sup
n, m Q .

r(x[ − n, m], 0)

=1 − r+(x, 0),

since r(A, 1) · |A|+r(A, 0) · |A|=|A| for any finite binary word A. The deri-
vation for the upper density follows the same argument, while the second
statement follows from the identity: r(xg[ − n, m], 1)=r(x[ − n, m], 0)=
1 − r(x[ − n, m], 1). L

Lemma 2.2. r±(x, A) \ r±(x, B) · r(B, A) for any configuration
x ¥ X and any pair of finite words A, B.

Proof. If A ł B the inequality becomes trivial, since r(B, A)=0,
while r±(x, A) \ 0. Assume now that A ı B. Then -n, m ¥ Z we have
r(x[ − n, m], A) \ r(x[ − n, m], B) · r(B, A) because the right hand side
takes into account only those enclosures of B to x when the word B
belongs to a segment x[i, j]=A, while there might be other enclosures as
well. L

Proof of the Necessity Part of Theorem 1.2 in the Case v=M=1.
Let us prove first that r±(x, 1)=r±(Tx, 1) for all x ¥ X.

For any n, m ¥ Z+ we have |;m
i=−n (xi − (Tx)i)| [ 2, since during one

iteration of the map at most one particle can enter the interval of sites from
− n to m ( from behind) and at most one particle can leave this interval.

By the definition of the lower density there is a sequence of pairs
(nj, mj) ||0

j Q . (., .) such that

1
nj+mj+1

C
mj

i=−nj

xi ||0
j Q .

r− (x, 1).

On the other hand, since |;mj
i=−nj

xi − ;mj
i=−nj

(Tx)i | [ 2, we deduce that
r− (x, 1) is a limit point for partial sums for the sequence Tx. Therefore we
need to show only that this is indeed the lower limit. Assume, on the con-
trary, that there is another limit point, call it t, for the partial sums for Tx
such that t < r− (x, 1). Doing the same operations with the partial sums for
Tx converging to t we can show that this value is also a limit point for the
partial sums for the sequence x, and, hence, t cannot be smaller than
r− (x, 1).
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The proof for the upper density follows from the same argument.
By Lemma 2.1 we have r±(x, 1)=1 − r+ (x, 0), which proves the pre-

servation of the density of zeros as well.
To prove that all other statistics are not preserved under dynamics we

need to study it in more detail. Therefore we postpone the continuation of
the proof till the end of this section.

Lemma 2.3. Tg=T−1.

Proof. The action of the map T on binary configuration is equiva-
lent to the exchange of any pair 10 to 01. Since the dual map describes the
dynamics of holes it corresponds in this case to the exchange of pairs 01 to
10, which proves the statement. L

By a cluster (of particles) in a binary configuration x ¥ X we mean a
subword x[n, m] with n < m such that xi=1 -i ¥ {n,..., m} and xn − 1=
xm+1=0. After each iteration of the map T the last particle in the cluster
moves away (i.e., (Tx)m=0) and either appears a new element in the
cluster from the left (i.e., (Tx)n − 1=1 and (Tx)n − 2=0), or the first particle
preserves its position n. Therefore the number of particles in a given cluster
cannot increase, and the time up to the moment when the cluster length
shrinks to 1 (i.e., it disappears) we shall call the life-time of the cluster or
the number of iterations which are needed for a given cluster to disappear.2

2 Observe that speaking about the dynamics of a given cluster of particles we take care only
about the particles remaining in the cluster (including those that joined it) but not about the
particles which already left it and, in principle, might join another cluster.

Define an integer-valued function

I(x, i) :=max{k < i : r(x[k, i], 1)=r(x[k, i], 0)} (2.1)

and consider a collection of sets W2n :={A ¥ {0, 1}2n : A2n=1, I(A, 2n)
=1}. Note that by the relation (2.1) for any A ¥ W2n we have r(A, 1)=
|A|/2. Observe also that if A ¥ W2n then for any 0 < m < n and any word
B ¥ {0, 1}2m such that Bi=Ai -0 < i [ 2m we have B ¨ W2m. Therefore we
shall call the words from W2n minimal words (or minimal intervals) corre-
sponding to clusters of particles in their ends.

Lemma 2.4.3 Let ;m
i=k xi=m − k+1, xk − 1=xm+1=0 (i.e., the

3 Technical estimates of this type were considered also in refs. 1, 4, and 10.

positions from k to m correspond to a cluster of particles) and let
I(x, m) > − .. Then after exactly 1

2 (m − I(x, m) − 1) iterations (which is
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equal to the number of ones minus one in the word x[m − I(x, m), m]) this
cluster will disappear. If r+(x, 1) [ 1/2 then -i ¥ Z we have I(x, i) > − ..

Proof. Let n=I(x, m). Consider a map C: W2n
Q Z2n − 2 defined by

the relation:

(CA)i+1=Ai+min{Ai − 1, 1 − Ai} − min{Ai, 1 − Ai+1}.

Observe that this is a shift to the right of the action of our map T. We shall
prove that for each n we have C: W2n

Q W2n − 2 (see Fig. 2).
Let A ¥ W2n and let zA be the position of the last 0 in A. For each word

A ¥ W2n define a new word AŒ ¥ Z2n − 2 as follows:

A −

i :=˛Ai if i [ 2n − 2 and i ] zA

1 if i=zA.

Then |AŒ|=|A| − 2=2n − 2, r(AŒ, 1)=1/2 and thus AŒ ¥ W2n − 2 since
otherwise A would be not minimal as well. Now using the following simple
identity:

(CA)i=˛ (CAŒ)i if zA − i ¨ {1, 2}
0 if i=zA − 2
AzA

if i=zA − 1
1 if i=|A| − 2,

we get CA ¥ W2n − 2. Example: A=001011, AŒ=0011.
It remains to show that if we have a cluster of particles located in the

end of a minimal configuration A ¥ W2n then this cluster (i.e., particles at
sites from zA+1 to 2n) will vanish after n − 1 iterations. Observe that after
one iteration of the map T the cluster either preserves its length, or the

Fig. 2. Examples of the action of C t on W10 (left) and W8 (right).
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length decreases by one (when two positions immediately preceding the
cluster are occupied by two zeros). The map C defined above controls this
process since for each A ¥ W2n and each 0 [ t [ n − 1 the last positions
starting from (zC

tA+1) correspond to the cluster under study. L

Corollary 2.5. The dynamics of a cluster of particles depends only
on the distribution of particles lying below the cluster. Moreover, for a
given cluster of particles only particles belonging to its minimal word can
join the cluster. Thus, if a particle does not belong to any minimal word,
then for each t ¥ Z+ 2 {0} its local velocity in the configuration T tx is
equal to 1, i.e., it moves freely.

Lemma 2.6. Let A :=x[n, m] and AŒ :=x[nŒ, mŒ] be two minimal
words in the configuration x ¥ X. Then the inequality m < mŒ yields either
m < nŒ (i.e., A 5 AŒ=”), or nŒ < n (i.e., A … AŒ).

Proof. Assume on the contrary that n [ nŒ [ m. Then by the defini-
tion of a minimal word we have

1
2 (mŒ − nŒ+1)=r(x[nŒ, mŒ], 1) · (mŒ − nŒ+1)

=r(x[nŒ, m], 1) · (m − nŒ+1)+r(x[m, mŒ], 1) · (mŒ − m+1)

> 1
2 (m − nŒ+1+mŒ − m+1)=1

2 (mŒ − nŒ+2).

We came to a contradiction. L

Corollary 2.7. For a given particle t in a configuration x ¥ X let the
length of the largest minimal word to which t belongs be 2n. Then for any
t \ n − 1 the local velocity of the particle t in the configuration T tx is equal
to 1.

Observe that in the case v=M=1 the set Free={x ¥ X1 : xixi+1=0
-i} is the union of ‘‘free’’ particles (i.e., particles having velocity 1), while
its dual Freeg={x ¥ X1 : (1 − xi)(1 − xi+1)=0 -i} corresponds to ‘‘free’’
holes (i.e., to holes having velocity − 1).

Lemma 2.8. Let r+(x, 1) [ 1/2, then each cluster of particles in the
configuration x will disappear after a finite number of iterations and
dist(T tx, Free) ||0

t Q . 0. If there is a cluster of particles having an infinite
minimal word (i.e., which does not vanish in finite time), then r+(x, 1)
> 1/2. If r+(x, 1) > 1/2 then there are clusters of particles with arbitrary
large (but may be finite) minimal words.
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Proof. Let x ¥ X satisfy the assumption that r+(x, 1) [ 1/2 and let
the segment x[n, m] be a cluster of particles. Then there exist a pair of
integers nŒ, mŒ such that − . < nŒ < n < m [ mŒ < . and x[nŒ, mŒ] is the
largest minimal word covering the cluster of particles x[n, m] (otherwise
this would contradict to the definition of the upper density). Hence by
Lemma 2.4 after at most (mŒ − nŒ)/2 iterations this cluster will disappear
and all particles will become free. Since this argument can be applied to
any cluster of particles, this yields the first statement.

Assume now that the minimal word of a cluster of particles x[n, m] is
not bounded. Then for any nŒ < n we have x[nŒ, m] > 1/2 and thus for any
k ¥ Z+ we have

r(x[n − k2, m+k], 1) \
m+k − n+k2+1

m − n+k2+1
r(x[n − k2, m], 1)

>
m − n+k2+1

m+k − n+k2+1
1
2

=11 −
k

m+k − n+k2+1
2 1

2
||0
k Q .

1
2

.

Therefore r+(x, 1) > 1/2, which proves the second statement.
The last statement is an immediate consequence of the definition of the

minimal word. L

Lemma 2.9. Let r− (x, 1) > 1/2 then dist(Tg txg, Free) ||0
t Q . 0.

Proof. By Lemma 2.1 we have r+(xg, 1)=1 − r− (x, 1) < 1/2. On
the other hand, Lemma 2.3 shows that asymptotic properties of the maps T
and Tg coincide, thus we can apply the statements of Lemma 2.8 for the
case of (Tg) t xg to prove the desired result. L

Note now that there are configurations not satisfying the assumptions
of Lemmas 2.8 and 2.9 which still converge to Free 2 Freeg under the
action of the map T. Indeed, let y=...111000... and let the index 0 corre-
spond to the first 0 in y. Observe that r− (y, 1)=0 < r+(y, 1)=1, however
dist(T ty, Free)=2−(t+1)(1+2−2+2−4+ · · · )=2

3 · 2−t
||0
t Q . 0, since for large

t the ‘‘central’’ part of T ty will be occupied only by free particles. On
the other hand, for yg=...000111... we have dist(T tyg, Free)=2−1+2−3

+ · · · +2−2n+1+ · · · =1/3 for each t ¥ Z+, while dist(Tg tyg, Free)=
2
3 · 2−t

||0
t Q . 0.

Lemma 2.10. For x ¥ X we have dist(T tx, Free) ||0
t Q . 0 if and only

if r+(x[1, .], 1) :=lim supn Q . r(x[1, n], 1) [ 1/2. If additionally there
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exists a pair n, m ¥ Z+ such that r(x[i, i+m − 1], 1) [ 1/2 for each i \ n
we have dist(T tx, Free) [ Const 2−t.

Proof. Observe that r+(x[1, .], 1) [ 1/2 implies that there exists
N ¥ Z such that the life-time for each cluster of particles lying to the right
from N is finite. On the other hand, the distance to the position N from the
most right cluster of particles in T tx located to the left of N grows with t
linearly. This proves the first statement and shows that the rate of conver-
gence might be smaller than 2−t only if the life-time of clusters of particles
lying to the right from a sufficiently large position N is not bounded. The
additional assumption guarantees that this cannot happen, which yields the
second statement. L

Let M(X) be the set of probabilistic translation invariant measures on
X and let m[f(x)] :=> f(x) dm(x) for m ¥ M(X), in particular, m[x0] :=
m(x ¥ X : x0=1). Consider a subset of M(X) corresponding to measures in
the space of sequences with weak dependence between coordinates (expo-
nentially fast decay of correlations):

Mp(X) :={m ¥ M(X) : m[x0]=p, |m[x0 · xk] − m2[x0]| [ Ce−a |k|}.

for some C, a > 0 and -k ¥ Z. Note that, e.g., a product (Bernoulli)
measure mp ¥ Mp(X).

Lemma 2.11. For any m ¥ Mp(X) we have r(x, 1)=p for m-a.a.
x ¥ X, and thus m(x ¥ X : r− (x, 1) < 1/2 < r+(x, 1))=0.

Proof. Let Sn, m(x) :=;m
i=−n xi. Then m[Sn, m(x)]=p and by Chebyshev

inequality -e > 0 we have

m(x ¥ X : |Sn, m(x) − p| \ e) [
1
e2 · m[(Sn, m(x) − p)2].

A straightforward calculation shows that m[(Sn, m(x) − p)2] [ C1
n+m+1 and

thus

m 1x ¥ X : : 1
n+m+1

C
m

i=−n
xi − p: \ e2 [

C1

(n+m+1) e2 |||0
n, m Q . 0.

Therefore r±(x[ − n, m], 1) |||0
n, m Q . p in probability, which yields the

existence of the density r(x, 1)=p for m-a.a. x ¥ X and thus the statement
under question. L
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Denote by Pern(T) :={x ¥ X : Tnx=x} the set of n-periodic (in time)
trajectories of the map T and by B(Y) :=1n \ 0 T−nY the basin of attraction
of a subset Y … X.

Lemma 2.12. T: X Q X is a Lipschitz continuous map in the topology
induced by the metrics dist( · , · ). For each n ¥ Z+ there exists an n-periodic
trajectory, and all periodic trajectories are unstable. Clos(B(Free 2
Freeg))=X, (Free 2 Freeg) 5 Per1(T)=”, and mp(B(Per1(T)))=0
while Clos(B(Per1(T)))=X.

Proof. Let us start with the Lipschitz continuity. Consider two con-
figurations x ] y ¥ X and assume that − n < 0 is the largest negative index
and m \ 0 is the smallest nonnegative index of sites, where they differ, i.e.,
for all − n < i < m we have xi=yi. Then we have

2−n+2−m [ dist(x, y) [ 2(2−n+2−m).

On the other hand, a straightforward calculation shows that the closest to
the origin from the left side differing coordinates of the configurations Tx
and Ty belong to the set { − (n+1), −n, −(n − 1)}, while the closest from
the right side belong to {m − 1, m, m+1}. Thus

2−(n+1)+2−(m+1) [ dist(Tx, Ty) [ 2(2−(n − 1)+2−(m − 1)).

Therefore

1
4
=

2−(n+1)+2−(m+1)

2(2−n+2−m)
[

dist(Tx, Ty)
dist(x, y)

[
2(2−(n − 1)+2−(m − 1))

2−n+2−m =4.

For a given n ¥ Z+ consider a space-periodic configuration x ¥ X with
the (space) period n, e.g., xi=xi+n -i. Then it is immediate to show that for
any t ¥ Z the configuration Tx is again space periodic with the same period
n and converges either to Free, or to Freeg, depending on its density. This
gives a construction of the n-periodic (in time) trajectories.

The structure on the set of fixed points Per1(T) is a bit more involved:

Per1(T) :=˛x (n) ¥ X : x (n)
i =˛0 if i < n

1 otherwise
ˇ .

Indeed, assume that Tx=x, then either x does not have zero coordinates,
or all coordinates starting from, say, nth, should be equal to one. Now for
x (n) ¥ Per1(T) we define y (n, m) ¥ X such that

y (n, m)
i =˛0 if i < n, or i > m

1 otherwise
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for some m > n. Then dist(x (n), y (n, m))=2−m
||0
m Q . 0, while dist(T tx (n),

T ty (n, m)) ||0
t Q . 2−(n − 1) ] 0. Thus for each e > 0 there is a configuration

xŒ=xŒ(e) such that dist(x (n), xŒ) [ e and T txŒ 7 x (n) as t Q ., which yields
instability.

Observe now that the set Y :=X0(B(Free 2 Freeg))={x ¥ X : r−(x, 1)
< 1/2 < r+(x, 1)} has mp-measure zero, since for each mp-typical trajectory
the lower and upper densities coincide. Consider now an arbitrary config-
uration x ¥ X and a sequence of configurations {y (n)}n defined as

y (n)
i =˛xi if i < n,

1 otherwise.

Then dist(x, y (n)) [ 2−n+1, on the other hand, y (n)
||0
n Q . Per1(T), which

proves the last statement. L

Remark. In the case of a finite cluster of particles, its last particle
immediately leaves the cluster under dynamics. This is not the case for
clusters not bounded from the right, which explains the existence of fixed
points.

For a given reference measure mref we shall say that a closed
T-invariant set Y is a weak attractor if mref(B(Y)) > 0. A weak attractor
Y is called a Milnor attractor if mref(B(Y)0B(YŒ)) > 0 for any proper
compact invariant subset YŒ ı Y (see, e.g., ref. 12).

Lemma 2.13. The set Free 2 Freeg is a week attractor with respect
mref=mp, but not a Milnor one, moreover it is not a topological attractor.

Proof. The sets Free and Freeg are closed, since they contain all their
limit points. Denote by Z (p) :={x ¥ Free : r(x, 1)=p} the subset of the
set Free containing only configurations with density p. The set Z (p) is
T-invariant and by Lemma 2.11 we have mp(B(Z (p)))=1. Choose now an
arbitrary single configuration from Z (p) and denote by ZŒ

(p) the set consist-
ing of this configuration and all its left and right space shifts. Clearly we
have mp(Z (p) 0(Z(p) 0ZŒ

(p)))=mp(ZŒ
(p))=0. Observe that the points from

the complement to the basins of attraction of Free and Freeg are every-
where dense, which proves the absence of included open sets. The last
statement follows from the fact that the basin of attraction does not
contain any open set. L

Proof of Theorem 1.2 (Continuation). Let us prove now that for
any word A with |A| > 1 the density r±(x, A) is not preserved under
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dynamics. There might be 3 possibilities: r(A, 1) < 1/2, r(A, 1) > 1/2 and
r(A, 1)=1/2. We start from the first case. Clearly r(A, 1) < 1/2 yields
r(A, 00) > 0. Consider a configuration x :=OA 11 · · · 1z

2 |A|
P, where x=OBP —

...BBB... stays for a space-periodic configuration. By the construction r(x, 1)
=(r(A, 1) · |A|+2 |A|)/(3|A|) \ 2/3 > 1/2. Therefore T tx ||0

t Q . Freeg and
hence r(T tx, 00) ||0

t Q . 0. Assume now that the density is preserved, i.e.,
r(T tx, A)=r(x, A) -t. Then by Lemma 2.2 we have

r(T tx, 00) \ r(T tx, A) · r(A, 00)=r(x, A) · r(A, 00) > 0,

while the left hand side vanishes when t Q .. We came to a contradiction.
If r(A, 1) > 1/2 we shall follow a similar argument, considering

another space-periodic configuration x :=OA 00 · · · 0z
2 |A|

P.

In a more delicate case r(A, 1)=1/2 we do the following. If addi-
tionally r(A, 11) > 0 we follow the same argument as in the case r(A, 1)
< 1/2 to show that r(x, 11) > 0, while r(T tx, 11) ||0

t Q . 0. If r(A, 00) > 0
we follow the case r(A, 1) > 1/2 to show that r(x, 00) > 0, while
r(Tx, 00) ||0

t Q . 0. It remains to consider the case when r(x, 11)=r(x, 00)
=0, i.e., A=1010...10 or A=0101...01. In the first of these cases we
choose x :=O1A0P. Then

r(O1A0P, A)= lim
n Q .

n
n(|A|+2)

=
1

|A|+2
<

1
2

= lim
n Q .

n|A|/2
n|A|

=r(T(O1A0P), A).

In the second case we choose x :=O0A1P to come to a similar contradic-
tion. L

Proof of Theorem 1.3 in the Case v=M=1. The proof follows from
Lemmas 2.8–2.12. L

Proof of Theorem 1.4 in the Case v=M=1. We have the following
identity: r±(x, 1)=r±(x, 10)+r±(x, 11). If r+(x, 1) [ 1/2 then T tx Q Free
and r+(T tx, 11) Q 0, thus F±(T tx)=r±(T tx, 10)=r±(T tx, 1) − r±(T tx, 11)
Q r±(T tx, 1)=r±(x, 1). The situation r− (x, 1) \ 1/2 can be reduced to the
previous one by going to the dual configuration.

Consider now the case r− (x, 1) < 1/2 < r+(x, 1). By definition there
exists a sequence of pairs of positive integers n −

i, m −

i Q . such that
r(x[ − n −

i, m −

i], 1) ||0
i Q . r− (x, 1) < 1/2. For each i we choose integers

ni \ n −

i, mi \ m −

i to be the smallest integers satisfying the condition that

Ergodic Properties of a Simple Deterministic Traffic Flow Model 917



− ni − 1 is the ending point and mi+1 is the starting point of some non-
overlapping minimal intervals of the configuration x. If there are no more
nonoverlapping minimal intervals in the considered direction or the
segment x[ − n −

i, m −

i] intersects with an infinitely long minimal interval we
set ni :=n −

i or mi :=m −

i respectively, depending on the direction where this
event occurs. Clearly, we have r(x[ − ni, mi], 1) [ r(x[ − n −

i, m −

i], 1) and
thus r(x[ − ni, mi], 1) ||0

i Q . r− (x, 1) < 1/2. By the definition of minimal
intervals after ti :=(ni+mi)/2+1 iterations all clusters of particles inside
of the segment x[ − ni, mi] will disappear and all particles will become
free. Therefore we can again apply the same argument as in the case
r+(x, 1) [ 1/2 and obtain the relation for the lower limit of the flux. To
obtain the relation for the upper limit one should consider the dual con-
figuration. L

Lemma 2.14. Let x ¥ X satisfy the assumption that there exists a
number c ¥ (0, 1) such that -n ¥ Z+ and for any word A ı x[ − n, n] with
|A| > 2cn we have r(A, 1) [ 1/2. Then dist(T tx, Free) [ 2−t/c+1 for any
t ¥ Z+. If xg satisfies the same assumption, then we have dist(T tx, Freeg)
[ 2−t/c+1.

Proof. Consider only those n ¥ Z+ for which the largest minimal
word containing a cluster of particles in x[ − n, n] also belongs to
x[ − n, n]. By the assumption of Lemma the length of the largest minimal
interval containing in the segment x[ − n, n] does not exceed 2cn. Therefore
the corresponding clusters of particles with disappear after at most cn
iterations, and thus for all sufficiently large t ¥ Z+ all particles in the
segment T tx[ − t/c, t/c] will become free. Thus the closest to the origin
nonfree particle can appear not earlier as at the site t/c, which gives the
desired estimate of the rate of convergence. The second statement follows
from the same argument applied to the dual map. L

Lemma 2.15. Let x ¥ X satisfy the same assumption as in Lemma 2.14,
then

lim sup
n Q .

1
2n

C
n

i=−n
V(Tnx, 1)=F1, 1(r(x, 1)),

where the function Fv, M is defined in the formulation of Theorem 1.4.

Proof. Observe that 1
2n ;n

i=−n V(x, 1)=r(x[ − n, n], 10). Applying
the same argument as in the proof of Lemma 2.14 we see that after n itera-
tions the segment Tnx[ − n/c, n/c] contains only free particles. Therefore
r(x[ − n, n], 10)=r(x[ − n, n], 1), which yields the desired equality. L
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Corollary 2.16. The statements of Lemmas 2.14, 2.15 remain valid if
instead of -n ¥ Z+ we assume that n belongs to the subset of Z+ of density 1.

Lemma 2.17. -c ¥ (0, 1) for mp-a.a. configurations x ¥ X the set of
n ¥ Z+, for which any word A ı x[ − n, n] with |A| > 2cn satisfies the
inequality r(A, 1) [ 1/2, has the density 1.

Proof.4 Let {xi}
.

−. be a Bernoulli sequence with the density

4 The idea of this construction, based on the large deviation principle, was proposed by
A. Puhal’skii.

P(xi=1)=p < 1/2 for all i ¥ Z. Introduce a sequence of functions
yn(y) := 1

2n+1 ;−n+N2nyM
i=−n xi depending on a real variable y ¥ [c, 1], and con-

sider a functional

f(y(y)) := sup
y ¥ [0, 1 − c]

sup
c [ s [ 1 − y

1
s

(y(y+s) − y(y))

defined in Skorohod space of functions y(y). Then the quantity under
question is the probability P(f(yn(y)) [ 1/2 -y ¥ [c, 1]). Since yn(y) con-
verges in probability for a given y to ỹ(y) :=py and the functional f is
continuous, f(yn(y)) converges to f(ỹ(y)) (functional law of large
numbers). Thus we have

P(f(yn(y)) [ 1/2 -y ¥ [c, 1]) QP(f(ỹ(1)) [ 1/2)=1,

where the rate of convergence (P(f(yn(1)) > 1/2))1/n
||0
n Q .

`2p(1 − p)
follows by the combination of the large deviation principle for the func-
tions yn(y) and the contraction principle (see, e.g., ref. 6). L

Corollary 2.18. Results of Lemmas 2.14, 2.15, 2.17 prove
Theorem 1.5 in the case v=M=1. Since we shall show later that the
analysis of Tv, M in all cases can be reduced to the case of v=M=1 we
shall not consider consider the proof of this result for other cases.

3. THE ONE LANE FAST PARTICLES MODEL (Tv, X )

Note that the analysis of dynamics of the slow particles model (T, X)
is divided logically into two parts: first, we study low density initial con-
figurations x ¥ X with r+(x, 1) [ 1/2, and then for high density configura-
tions x ¥ X with r− (x, 1) > 1/2 we pass to the dual ones using the property
that r+(xg, 1) [ 1 − r− (x, 1) < 1/2 and argue that the dual map Tg — T−1

Ergodic Properties of a Simple Deterministic Traffic Flow Model 919



has exactly the same asymptotic properties as T. The problem with the fast
particles model (Tv, X) is that the dual map Tg

v ] T−v in this case, and,
in fact, has a very nontrivial dynamics. Namely, Tg

−v corresponds to the
situation, known in physical literature (in the case v=2) as a traffic model
with ‘‘smart drivers,’’ who anticipating the motion of at most v cars ahead,
may move to an occupied site ahead of it with the maximal velocity 1.
Example for the case v=2: O01110P|0

T2 O01011P.
Therefore since we are unable to study directly the dual map in this

case and according to the entire ideology of this paper, we elaborated a
reduction to the main case v=M=1 based on the following consideration.
Note that under the action of the map T on x ¥ X each pair 10 goes to 01
(i.e., the position of a particle and a hole are exchanged). Therefore T is
equivalent to the substitution rule 10 Q 01. To apply this idea to the case of
Tv we introduce an alphabet Av :={01, 02,..., 0v, 1} with v+1 symbols and
a map Cv: X QAZ

v — Xv defined as follows: for each segment x[i, i+n+1]
=1 0 · · · 0z

n
1, we set Cvx[i, i+n+1] :=1 0v · · · 0vz

Nn/vM

0n − Nn/vM v1. If n − Nn/vM v=0

we shall drop the last element in Cvx[i, i+n+1]. It remains to define the
action of Cv on ‘‘tails’’ of x consisting of only zeros, which we set according
to the following rules: ...0001... |0Cv ...0v0v0v1... and ...1000... |0Cv

...10v0v0v....
Now we are ready to define the substitution map Sv: Xv Q Xv acting in

the set Xv according to the set of v substitution rules 10i Q 0i1 for 0 < i [ v,
which generalizes the substitution rule for the slow particles dynamics in
the case of v different types of holes.

To study the life-time of clusters of particles in configurations x ¥ Xv

we introduce also a new map T̃ :=CvC
−1
v Sv from the space Xv into itself.

Lemma 3.1. Tv=C−1
v SvCv, and Tn

v =C−1
v T̃nCv for any n ¥ Z+.

Proof. Straightforward. Note only that the map CvC
−1
v needs not to

be identical, for example:

CvC
−1
v O10v − 1011P=O10v1P,

and that C−1
v CvC

−1
v — C−1

v which we use to get the 2nd relation. L

Observe that the map T̃ acts on Xv in exactly the same way as T acts
on the space of binary sequences, namely T̃ moves each particle by one
position forward if there is no particle there or the particle preserves its
position otherwise. So the only difference is that now we have v different
types of zeros, instead of the only one type in the case v=1.
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Fig. 3. Example of the action of C t on W9 with v=2.

Therefore to study the life-time of a cluster of particles we apply a
similar machinery as in the case of the slow particles model. Denote

Ind(a) :=˛− v if a=1

i if a=0i

, I(A, i) :=max 3k < i : C
i

j=k+1
Ind(Aj) < 04 ,

Wn :={A ¥ An
M : An=1, I(A, n)=1},

where Aj is (as usual) the jth element of the word A. Consider a map C

defined on words of length n ¥ Z+ as follows: (CA)i :=(T̃A)i+1 for all
i=1, 2,..., n − 1 (see Fig. 35).

5 Note that 0102 in the beginning of the line for C2A is the result of the application of CvC
−1
v

and without it the line would start from 0201.

Lemma 3.2. C: Wn
Q Wn − 2 − t, where 0 [ t < n − 1. The life-time

of the cluster of particles in the end of a word A ¥ Wn is equal to
(r(A, 1) · |A| − 1).

Proof. The proof follows from the same argument as the one of
Lemma 2.4. The only difference is that due to the action of C the number
of elements in CA may become smaller than |A| − 2, since the action of
CvC

−1
v may decrease the number of 0i. On the other hand, during one

iteration of the map C only one element 1 disappears from (the right hand
side) of A, i.e., r(A, 1) · |A|=r(CA, 1) · |CA|+1. Therefore the number of
iterations needed for the cluster of particles in the end of the word A to
disappear is equal to the number of ones in the word A minus one. L

Proof of Theorems 1.2–1.4 for the Case v > 1, M=1. The proof
follows immediately from Lemmas 3.1 and 3.2 and the reduction to the
case v=1 obtained there. L

Consider now a special case of superfast particles corresponding to the
choice of maximal velocity v=.. Denote

X (.) :={x ¥ X : -n ¥ Z ,m, mŒ > |n| : xm=1, x−mŒ=0},
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i.e., the set of binary configurations having no infinitely long right ‘‘tails’’
of zeros or left ‘‘tails’’ of ones. Then the maps T., Tg

. : X (.)
Q X (.) are well

defined. The substitution rule 1 0 · · · 0z
i

1 Q 10i1 -i ¥ Z+ maps X (.)
Q X..

Strictly speaking, the latter has an infinite alphabet, however all arguments
applied in the case of finite v work as well. Moreover here the situation is
even simpler, because between each pair of consecutive ones there is only
one zero with a certain finite index: ...10i10j... . Thus the dynamics of
(T., X (.)) is equivalent to the dynamics of free particles, which gives the
flux F±(x)=1 − r±(x, 1).

4. REDUCTION OF T1, M TO THE DIRECT PRODUCT OF M MAPS T

AND THE GENERAL MULTI LANE MODEL (Tv, M, XM)

The model of a multi lane flow of slow particles on a finite lattice has
been introduced in ref. 15 and generalized for the case of an infinite lattice
Z in ref. 4, where statistical properties of regular initial configurations have
been obtained. However the approach used in ref. 4 does not allow to
study the dynamics of general initial configurations, which we shall con-
sider in this Section using a completely different method.

Our first aim is to redistribute a configuration x ¥ XM into M binary
configurations {x (j) ¥ X=X1}M

j=1, such that T t
1, Mx=;j T tx (j) for all

t ¥ Z+ 2 {0}, where the notation x=;j x (j) means that xi=;j x (j)
i for

each i ¥ Z. To solve this problem we introduce a sawtooth redirection
Sa: XM Q (X1)M with Sax={x(j)}M

j=1 of a configuration x ¥ XM to a collec-
tion of binary configurations {x (j)}M

j=1 with the starting point at site a ¥ Z:

x (j)
i :=˛1 if i \ a and j ¥ 1Â

i − 1

k=a

xk, Â
i

k=a

xk
6

1 if i < a and j ¥ 1Â
a − 1

k=i
(−xk), Â

a − 1

k=i+1
(−xk)6

0 otherwise,

where a À b :=(a+b − 1)(mod M)+1 and Ám
i=n xi :=xn À · · · À xm. In

other words, for the configuration x ¥ XM we construct a bi-infinite ‘‘stair-
case’’ starting from the site l with the ith stair of height xi and then redis-
tribute the result modulo M (preserving the site number) among M binary
configurations {x (j)}M

j=1.
With some abuse of notation we shall refer to (Sax) (j) — x (j) as the jth

lane of Sax={x (j)}M
j=1 and denote the action of the direct product of maps

Tv applied at Sax as TvSax :={Tvx (j)}M
j=1.
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Example for the case v=1, M=3 and the starting site a correspond-
ing to the 3d occurrence of ‘‘1’’:

Sa(...11211221...)=

...10100110...

...00101010...

...01010101...

|0
T1, 3

...0 1010101...

...f 0010101...

...f 010101 f ...

=Sa+1(...f 112121 f ...),

where the unknown positions are marked by f . Consider also two more
examples of the sawtooth redirection for space-periodic configurations in
X3 (in both cases the starting site a corresponds to the first site of the
period):

Sa(O11322P)=

O00111P

O01101P

O10110P

Sa(O2312P)=

O011011011101P

O110101101101P

O110111010110P

Observe that after the redirection the length of the spatial period might
change drastically (2nd example).

Symbolically the sawtooth redirection is shown in Fig. 4(b) by cur-
vilinear lines corresponding to sawtooth rows of ones, open circles mark
the intersections of these lines with the ‘‘lanes’’ j, jŒ, i.e., the positions
where x (j) or x (jŒ) are equal to 1 (all other positions on these lanes are
occupied by zeros). Note that in the case of two lanes (i.e., M=2) the
redirection between lanes has been considered in ref. 2, however the general
case M > 2 turns out to be much more delicate and cannot be obtained as a
straightforward generalization of the procedure in ref. 2.

Fig. 4. ‘‘Sawtooth redirection:’’ (a) action of the map Sa on individual particles marked by
squares with their relative numbers (M=3); (b) symbolical representation of Sax, [i− , i+] –
one of intervals of monotonicity.
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Theorem 4.1. For any x ¥ XM and a ¥ Z and Sa(x) — {x (j)}M
j=1 we

have

(a) x=;j (Sax) (j),

(b) |r(x ( j)[n+1, n+k], 1) − r(x ( jŒ)[n+1, n+k], 1)| [ 1/k -j, jŒ ¥

{1,..., M}, n ¥ Z and k ¥ Z+,

(c) Sa+kx={(Sax) (j À k)}M
j=1 -k ¥ Z+,

(d) -v \ 1 we have TvSax=Sa+txŒ for some t ¥ {0, 1,..., v} and
xŒ ¥ XM which doesn’t depend on a,

(e) TSax=Sa+t(T1, Mx) for some t ¥ {0, 1}.

Proof. The statement (a) follows immediately from the definition of
the sawtooth redirection, because during the redirection each particle pre-
serves its position i.

The property (b) is equivalent to the assumption that

: C
k

i=1
x (j)

n+i − C
k

i=1
x (jŒ)

n+i
: [ 1,

i.e., that the number of particles in the same segment of different ‘‘lanes’’
j, jŒ can differ at most by 1. According to the ‘‘sawtooth redirection’’ for
any given finite segment of integers n+1, n+2,..., n+k the number of
intersections of the curvilinear lines in Fig. 4(b) with the horizontal line at
height j differs from number of intersections with the horizontal line at
height jŒ at most by one. This immediately yields the property (b).

The collection of binary configurations Sa(x) has a row of ones at site
i of height k if and only if xi=k, and the change of the starting point a of
the redirection only changes cyclically the starting point 1 of the enumera-
tion of lanes x (j). This proves the property (c).

Observe now that the definition of Sa(x) is equivalent to the existence
of a partition of Z into segments [i− , i+] such that x (1)

i−
=1, x (M)

i+
=1

(except for the most left segment where i− =−. and the most right one
where i+=.) and for any 1 < j < M there exists the only one i ¥ [i− , i+]
such that x (j)

i =1. Indeed, according to the ‘‘sawtooth redirection’’ the
curvilinear lines in Fig. 4(b) have the property that the intersection with the
horizontal line at height j occurs not earlier than with the horizontal line at
height jŒ > j (the curvilinear lines may have vertical segments). To simplify
the notation we shall say that Sa(x) is monotonous on [i− , i+].

Consider the interval of monotonicity [i− , i+] which starts from a, i.e.,
i− =a. We set t to be equal to the minimum of the number of not occupied
positions in x (1) ahead of the site i− (which is occupied by 1). Then under
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the action of Tv the particle at the site i− of the 1-st lane moves by t posi-
tions to the right. Observe that all particles on the other lanes in the
segment [i− , i+] have at least t not occupied positions ahead of them, and
therefore all these particles will move at least t positions to the right. Thus
to prove that the monotonicity is preserved it is enough to note that the
particle on the lane M cannot move further to the right than the first par-
ticle on the first lane of the next interval of monotonicity. Indeed, the latter
is a trivial consequence of the definition of intervals of monotonicity. This
finishes the proof of the statement (d) except the last part, which follows
from the statement (c).

To prove the statement (e), observe that by the definition of the map
T1, M (see Section 1) a particle at the site i of the lane j can switch to the
lane jŒ if and only if x (j)[i, i+1]=11 and x (jŒ)[i, i+1]=00, which con-
tradicts to the definition of the intervals of monotonicity. Therefore under
the sawtooth redirection no particle in Sa(x) will change its lane. L

Corollary 4.2. The sawtooth redirection gives a simple constructive
way to rearrange vehicles in a multi lane traffic flow between lanes (pre-
serving their positions in the flow) in order to achieve the maximal avail-
able flux.

According to Theorem 4.1(d) the map x Q ;j Tv(Sax) (j) is well defined
as a map from XM into itself and does not depend on the choice of the
starting site a ¥ Z. Moreover, it can be shown that this formula coincides
with (1.1) in the case v=1, and it clearly coincides with Tv in the case
M=1. Therefore we use this relation as a definition of the dynamics of
a general multi lane flow in the case v, M > 1, namely we set Tv, Mx :=
;j Tv(S0x) (j).

Proof of Theorem 1.2 for the Case v, M \ 1 and A … X. The
proof follows now from the sawtooth redirection, which gives the reduction
to the one-lane case. It remains to show that the statistics of more general
words A … XM with |A|=1 might be not preserved under dynamics.
The reason for this is that if M > 1 the multiplicities might be not
preserved. Indeed, let a ¥ AM 0{0, 1}. Then r(Oa(M − a+1) 0P, a)=1

3 (1+
N(M − a+1)/aM+0), while

r(T1, MOa(M − a+1) 0P, a)=r(O1(a − 1)(M − a+1)P, a)

=1
3 (0+0+N(M − a+1)/aM+0)

< r(Oa(M − a+1) 0P, a). L
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Proof of Theorems 1.3 and 1.4 for the Case v, M > 1. Consider a
configuration x ¥ XM. According to Theorem 4.1(b) for S0x — {x(j)}M

i=1 we
have -n, m ¥ Z+ that

|r(x (j)[ − n, m], 1) − r(x (jŒ)[ − n, m], 1)| [
1

m+n+1
.

Thus going to the limit as n, m Q . and using Theorem 4.1(a) we get
r±(x (j), 1)= 1

M r±(x, 1) for each j ¥ {1,..., M}. Therefore the application of
the results obtained in Sections 2 and 3 in the case of one-lane flows (i.e., in
the case of the map Tv) proves the statements under question. L

5. DYNAMICS OF MEASURES AND CHAOTICITY

In this section we shall study the action of the map Tv, M in the space
M(XM) of probabilistic measures on XM. This action is defined as follows:
Tv, Mm(Y) :=m(T−1

v, MY) for a measure m ¥ M(XM) and a measurable subset
Y ı XM. A measure m ¥ M(XM) is called translation invariant if it is
invariant with respect to the action of the shift map s: XM Q XM.

Lemma 5.1. If m ¥ M(XM) is translation invariant then this prop-
erty holds for T t

v, Mm -t ¥ Z+.

Proof. We have T t
v, Mm(Y)=m(T−t

v, MY)=m(sT−t
v, MY)=m(T−t

v, MsY)=
T t

v, Mm(sY). L

One might expect that under the action of the map Tv, M any transla-
tion invariant measure should converge to a Bernoulli one. Indeed,

Tmp(x ¥ X : x0=1)=mp(x ¥ X : x[0, 1]=11)+mp(x ¥ X : x[ − 1, 0]=10)

=mp(x ¥ X : x[0, 1]=11)+mp(x ¥ X : x[0, 1]=10)

=mp(x ¥ X : x0=1).

On the other hand, the product structure is not preserved even in the case
of the model of slow particles.

Lemma 5.2. The measure Tmp is not a product one for any
0 < p < 1.

926 Blank



Proof. We have

Tmp(x ¥ X : x[0, 1]=11)=mp(x ¥ X : x[0, 2]=111)

+mp(x ¥ X : x[ − 1, 2]=1011)

=p3+p3(1 − p)=p3(2 − p)

] p2=mp(x ¥ X : x[0, 1]=11).

Thus the measure Tmp does not have the product structure. L

It is of interest that in the case v > 1 even the average value
mp(x ¥ X : x0=1) is not preserved under dynamics. Indeed,

Tvmp(x ¥ X : x0=1)=mp(x ¥ X : x[0, 1]=11)

+ C
v

i=1
mp(x ¥ X : x[ − 1, 0]=10i)

=p2+p(1 − p)+ · · · +p(1 − p)v=p+p C
v

i=2
(1 − p) i

> p=mp(x ¥ X : x0=1).

Note that in the case of the slow particles model (T1, 1, X) some results
about the set of T1, 1-invariant measures and mathematical expectations of
the limit flux with respect to them were studied in ref. 2.

In ref. 3 it has been proven that the dynamical system (T1, M, XM) is
chaotic in the sense that its topological entropy is positive. Moreover this
paper gives an asymptotically exact (as M Q .) representation for the
entropy. The extension of this result to the case (Tv, M, XM) with v > 1 is
straightforward.

6. A MODEL OF A PEDESTRIAN GOING IN A SLOWLY MOVING

CROWD

Obtained results make it possible to explain the following practical
observation: it turns out that a pedestrian going in a slowly moving crowd
may go faster against the ‘‘flow’’ than in the same direction as other people
go. This observation certainly contradicts to standard probabilistic models
describing a diffusion of particles along/against the flow and indicates a
special (nonrandom) intrinsic structure of the flow in the case under con-
sideration. In this section we shall consider a model of this process
described as a passive tracer in the 1-lane flow of fast particles.
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Let T t
vx, v \ 1 describe the 1-lane flow of particles and let the passive

tracer occupy the position i at time t. Then before carrying out the next
time step of the model describing the flow of particles, the tracer moves in
its chosen direction to the closest (in this direction) position of a particle of
the configuration T t

vx. For example, if the moving forward tracer occupies
the position 2 and the closest particle in this direction occupies the position 5,
then the tracer moves to the position 5. After that the next iteration of the
flow occurs, the tracer moves to its new position, etc.

To be precise, let us fix a configuration x ¥ X with r− (x, 1) > 0 and
introduce the maps y ±

x : Z Q Z defined as follows:

y+
x i :=min{j: i < j, xj=1}, y−

x i :=max{j: i > j, xj=1}.

Then the simultaneous dynamics of the configuration of particles (describ-
ing the flow) and the tracer is defined by the skew product of two maps—
the map Tv and one of the maps y ±

· , i.e.,

(x, i) QT±(x, i) :=(Tvx, y ±
x i),

acting on the extended phase space X × Z. The sign + or − here corre-
sponds to the motion along or against the flow. We define the average (in
time) velocity of the tracer V(t, x) as S(t)/t, where S(t) denotes the total
distance covered by the tracer (which starts at the site 0) up to the moment
t with the positive sign if the tracer moves forward, and the negative sign
otherwise.

Theorem 6.1. Let x ¥ {x ¥ X : dist(T t
vx, Free 2 Freeg) [ 2−t/c+1} for

all t ¥ Z+ and some 0 < c < 1. If 0 < r+(x, 1) [ 1
v+1 , then V(t, x) ||0

t Q . v
if the tracer moves along the flow (i.e., in the case T+), and
limt Q . ( sup

inf ) V(t, x)= − 1
r± (x, 1)+1 in the opposite case. If r− (x, 1) > 1 − 1

v+1
and the tracer moves against the flow then V(t, x) ||0

t Q . − 1.

Remark. The assumption about the initial configurations is satisfied
for mp-a.a. x ¥ XM (see Theorem 1.5).

Proof. Since we assume that T t
vx converges to the attractor

Free 2 Freeg with the exponentially fast rate, then at the moment t ¥ Z+ we
have an exponentially long (in t) interval of the configuration T t

vx consist-
ing of only free particles or free holes (depending on the density). As we
shall show that V(t, x) converges to a constant, then to study its value we
can restrict the analysis to the case x ¥ Free 2 Freeg.
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Under the assumption 0 < r+(x, 1) [ 1
v+1 we have T t

vx ||0
t Q . Freev. In

the case of T+ the tracer will run down one of the particles and will follow
it, but cannot outstrip. Indeed after each iteration of the flow this free par-
ticle occurs exactly v positions ahead of the tracer. Thus V(t, x) ||0

t Q . v.
Consider now the case when the tracer moves backward with respect

to the flow. Then each time when the tracer encounters a particle, on the
next time step this particle moves in the opposite direction and does not
interfere with the movement of the tracer. We assume again that x ¥ Freev

and consider the case 0 < r+(x, 1) [ 1
v+1 . If on the spread of length n there

are m particles, i.e., m obstacles for the tracer then the average velocity on
this segment is equal to n − m

m . Going to the limit as n Q . we obtain the
desired estimate.

It remains to consider the case r− (x, 1) > 1 − 1
v+1 and thus

T t
vx ||0

t Q . Freeg
v , i.e., to the flow where all holes move at maximal velocity

− v. Thus after each iteration the tracer moves exactly by one position to
the left (since it never can encounter a hole), which gives the limit velocity
− 1. L

Observe that the motion against the flow is efficient only in the case of
low density of particles when r+(x, 1) [ 1

v+1 . On the other hand, in the high
density region in the case of the motion along the flow and in the region

1
v+1 < r− (x, 1) < 1 − 1

v+1 in the case of the motion against the flow the limit
velocity of the tracer depends not only on the densities, but also on the fine
structure of the configuration x. Moreover, this concerns also the case of
‘‘untypical’’ initial configurations with 0 < r− (x, 1) < 1/2 < r+(x, 1), when
there might be arbitrary long (even infinite) minimal words for both par-
ticles and holes.
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